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Motivation

We want to study radioactive nuclei
Important for nuclear astrophysics

Exotic nuclei not found in nature, they must be
produced in the lab
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What is MARS?

Momentum Achromat Recoil Spectrometer

Can isolate specific beams of products from other
beam products

Separates based on magnetic rigidity and velocity

selection

Inverse kinematics — heavy ion beam on light target

Products are forward focused due to momentum
conservation

R. E. Tribble, R. H. Burch, and C. A. Gagliardi, Nucl. Instrum. Meth. A 285, 441
(1989).




Magnetic Rigidity

Used to disperse secondary
beams after target

Moving charge curves in
magnetic field

Given by Lorentz force
This is a centripetal force

Bp is chosen
Determined by magnetic field
Allows for p/q selection
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Magnetic Rigidity

Only specific p/q will pass
through, others are blocked

Higher p/q = more rigid
Lower p/q = less rigid

Slits block off unwanted beam
Width of slits determines acceptance




Velocity Selection

Perpendicular electric and
magnetic fields Fmagnetic — Felectric

Create forces in opposite gvB = gE
directions P

Forces balance for specific Y= —

velocity B
Centered on detector

Because nuclei have the same

mv/q, selection in v is also

selection in g/m




MARS Design

Momentum Achromat Recoil Separator
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My Research

Study reaction products for three different
fragmentation reactions

Calculate production rates, then compare to
computer predictions

Important for computer predictions to be accurate

Different methods of beam production are being
investigated

Want to know which reactions are best for maximizing
production rates




Nuclear Fragmentation

Primary beam nucleus has nucleons shaved off as it
passes target
Keeps its velocity

Produces wider range of exotic nuclei at higher
energies than other mechanisms
Fusion-evaporation, transfer

First fragmentation reactions used with MARS
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Reactions

Three reactions studied:
36Ar at 45 MeV/u
4OAr at 40 MeV/u
24Mg at 48 MeV/u

306 um °Be target

1000 um Silicon detector
Position-sensitive

Reactions done with MARS here at the Cyclotron
Institute
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LISE++

Mass spectrometer simulation tool

Developed for French spectrometer
Calculates cross sections for nuclear reactions
Uses cross section to determine momentum

distributions of products

Uses momentum distributions and magnetic settings
to determine final production rates

O. Tarasov and D. Bazin, Nucl. Instrum. Meth. B 266, 4657 (2008).
K. SUmmerer et al, Phys. Rev. C 42, 2546 (1990).

12



Using LISE++

LISE++ has entire MARS e EE—
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Particle lIdentification

Use plots of energy loss versus vertical position
Energy loss of particles « g2/m
Vertical position « g/m

Can identify regions for N=Z, N=2+1, etc.

LISE++ gives energy loss in detector
Some particles lose all their energy
Some make it through detector

Different shapes are different energy loss
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Particle lIdentification

| °Ar +°Be at 45 MeV/u

Vertical axis is energy loss .-
Units are channel number, :
but proportional to energy

Horizontal axis is vertical

position!

Each cluster is different
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Particle ldentification

“Ar +°Be at 40 MeV/u | Mg +°Be at 48 MeV/u |
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Calculation of Production Rates

Integrate around each isotope to find total counts

Normalize counts to total beam current
Measured in Faraday cup

Use calculations from spectra and compare to
LISE++ predictions

Example: 2°Al
(1670 counts) * (60 pA) / (60 nC) = 1.67 particles per second

17



BAr + 9Be
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LISE/Data Ratio
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4O0Ar +°Be
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40Ar +°Be

LISE/Data Ratio
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24Mg +°Be
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LISE/Data Ratio
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Conclusions

LISE++ predictions are most accurate for stable
(N=Z) isotopes
Higher predictions for proton-rich (N<Z)
A few off by more than factor of 10
Lower predictions for neutron-rich (N>2)

Most predictions are reasonable, but model could be
improved
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