Production and Separation of Exotic Beams via Fragmentation Reactions using MARS

Kenneth Whitmore, William Jewell College Advisor: Dr. Robert Tribble, Texas A&M Cyclotron Institute

Overview

- Motivation
- Physics behind MARS
- My research
 - Fragmentation
 - Using LISE++
 - Particle identification
 - Production rate calculations
- Conclusions

Motivation

- We want to study radioactive nuclei
- Important for nuclear astrophysics
- Exotic nuclei not found in nature, they must be produced in the lab

What is MARS?

- Momentum Achromat Recoil Spectrometer
- Can isolate specific beams of products from other beam products
- Separates based on magnetic rigidity and velocity selection
- Inverse kinematics heavy ion beam on light target
 - Products are forward focused due to momentum conservation

R. E. Tribble, R. H. Burch, and C. A. Gagliardi, Nucl. Instrum. Meth. A **285**, 441 (1989).

Magnetic Rigidity

- Used to disperse secondary beams after target
- Moving charge curves in magnetic field
- Given by Lorentz force
- This is a centripetal force
- Bp is chosen
 - Determined by magnetic field
 - Allows for p/q selection

$F_{magnetic} = F_{centripetal}$
$qvB = \frac{Mv^2}{\rho}$
$B\rho = \frac{M\nu}{q}$
9

Magnetic Rigidity

- Only specific p/q will pass through, others are blocked
- Higher p/q = more rigid
- Lower p/q = less rigid
- Slits block off unwanted beam
 - Width of slits determines acceptance

Velocity Selection

- Perpendicular electric and magnetic fields
- Create forces in opposite directions
- Forces balance for specific velocity
 - Centered on detector
- Because nuclei have the same mv/q, selection in v is also selection in q/m

 $F_{magnetic} = F_{electric}$ qvB = qEB

Momentum Achromat Recoil Separator

My Research

- Study reaction products for three different fragmentation reactions
- Calculate production rates, then compare to computer predictions
- Important for computer predictions to be accurate
- Different methods of beam production are being investigated
 - Want to know which reactions are best for maximizing production rates

Nuclear Fragmentation

- Primary beam nucleus has nucleons shaved off as it passes target
 - Keeps its velocity
- Produces wider range of exotic nuclei at higher energies than other mechanisms
 - Fusion-evaporation, transfer
- First fragmentation reactions used with MARS

Reactions

- Three reactions studied:
 - ³⁶Ar at 45 MeV/u
 - ⁴⁰Ar at 40 MeV/u
 - ²⁴Mg at 48 MeV/u
- 306 µm ⁹Be target
- 1000 µm Silicon detector
 - Position-sensitive
- Reactions done with MARS here at the Cyclotron Institute

LISE + +

- Mass spectrometer simulation tool
- Developed for French spectrometer
- Calculates cross sections for nuclear reactions
- Uses cross section to determine momentum distributions of products
- Uses momentum distributions and magnetic settings to determine final production rates

O. Tarasov and D. Bazin, Nucl. Instrum. Meth. B **266**, 4657 (2008). K. Sümmerer *et al.*, Phys. Rev. C **42**, 2546 (1990).

Using LISE++

- LISE++ has entire MARS setup installed
- Just select beam, target, and magnet settings
- Calculates production rates for different magnetic settings

eam				
A Element q+	Beam energy			
35 Ar 18	Energy	• 45	MeV/u	
18	TKE	0 1618.54	MeV	
	Brho	0 1.953	Tm	
Stable	Р	0 10.539	GeV/c	
/ Table of	U	C 8.99e+4	KV	
	B	eam intensity	enA pnA pps KW	
X Cancel	En	ergy Loss in the T target box [KW]	1.2e-6	

Particle Identification

- Use plots of energy loss versus vertical position
 - Energy loss of particles $\propto q^2/m$
 - Vertical position $\propto q/m$
- Can identify regions for N=Z, N=Z+1, etc.
- LISE++ gives energy loss in detector
 - Some particles lose all their energy
 - Some make it through detector
- Different shapes are different energy loss

Particle Identification

- Vertical axis is energy loss
 - Units are channel number, but proportional to energy
- Horizontal axis is vertical position!
- Each cluster is different isotope
- Decreasing number of neutrons left to right
- Increasing mass going up

Calculation of Production Rates

- Integrate around each isotope to find total counts
- Normalize counts to total beam current
 - Measured in Faraday cup
- Use calculations from spectra and compare to LISE++ predictions

Example: ²⁵Al

(1670 counts) * (60 pA) / (60 nC) = 1.67 particles per second

³⁶Ar + ⁹Be

⁴⁰Ar + ⁹Be

²⁴Mg +⁹Be

Conclusions

- LISE++ predictions are most accurate for stable (N=Z) isotopes
- Higher predictions for proton-rich (N<Z)
 - A few off by more than factor of 10
- Lower predictions for neutron-rich (N>Z)
- Most predictions are reasonable, but model could be improved

Acknowledgements

- Dr. Tribble, Dr. Brian Roeder, Dr. Livius Trache and the rest of the Tribble group
- Dr. Sherry Yennello
- US DOE and NSF

