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 My research
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• Using LISE++
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• Production rate calculations

 Conclusions
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Motivation
 We want to study radioactive nuclei
 Important for nuclear astrophysics
 Exotic nuclei not found in nature, they must be 

produced in the lab
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What is MARS?
 Momentum Achromat Recoil Spectrometer
 Can isolate specific beams of products from other 

beam products
 Separates based on magnetic rigidity and velocity 

selection
 Inverse kinematics – heavy ion beam on light target

• Products are forward focused due to momentum 
conservation

R. E. Tribble, R. H. Burch, and C. A. Gagliardi, Nucl. Instrum. Meth. A 285, 441 
(1989).
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Magnetic Rigidity
 Used to disperse secondary 

beams after target
 Moving charge curves in 

magnetic field
 Given by Lorentz force
 This is a centripetal force
 Bρ is chosen

• Determined by magnetic field
• Allows for p/q selection

q
MvBρ

ρ
MvqvB
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Magnetic Rigidity
 Only specific p/q will pass 

through, others are blocked
 Higher p/q = more rigid
 Lower p/q = less rigid
 Slits block off unwanted beam

• Width of slits determines acceptance
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Velocity Selection
 Perpendicular electric and 

magnetic fields
 Create forces in opposite 

directions
 Forces balance for specific 

velocity
• Centered on detector

 Because nuclei have the same 
mv/q, selection in v is also 
selection in q/m

B
Ev

qEqvB

FF electricmagnetic
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MARS Design
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My Research
 Study reaction products for three different 

fragmentation reactions
 Calculate production rates, then compare to 

computer predictions
 Important for computer predictions to be accurate
 Different methods of beam production are being 

investigated
• Want to know which reactions are best for maximizing 

production rates
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Nuclear Fragmentation
 Primary beam nucleus has nucleons shaved off as it 

passes target
• Keeps its velocity

 Produces wider range of exotic nuclei at higher 
energies than other mechanisms
• Fusion-evaporation, transfer

 First fragmentation reactions used with MARS
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Reactions
 Three reactions studied:

• 36Ar at 45 MeV/u
• 40Ar at 40 MeV/u
• 24Mg at 48 MeV/u

 306 µm 9Be target
 1000 µm Silicon detector

• Position-sensitive

 Reactions done with MARS here at the Cyclotron 
Institute
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LISE++
 Mass spectrometer simulation tool
 Developed for French spectrometer
 Calculates cross sections for nuclear reactions
 Uses cross section to determine momentum 

distributions of products
 Uses momentum distributions and magnetic settings 

to determine final production rates

O. Tarasov and D. Bazin, Nucl. Instrum. Meth. B 266, 4657 (2008).
K. Sümmerer et al., Phys. Rev. C 42, 2546 (1990).
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Using LISE++
 LISE++ has entire MARS 

setup installed
 Just select beam, target, and 

magnet settings
 Calculates production rates 

for different magnetic 
settings
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Particle Identification
 Use plots of energy loss versus vertical position

• Energy loss of particles ∝ q2/m
• Vertical position ∝ q/m

 Can identify regions for N=Z, N=Z+1, etc.
 LISE++ gives energy loss in detector

• Some particles lose all their energy
• Some make it through detector

 Different shapes are different energy loss



15

Particle Identification
 Vertical axis is energy loss

• Units are channel number, 
but proportional to energy

 Horizontal axis is vertical 
position!

 Each cluster is different 
isotope

 Decreasing number of 
neutrons left to right

 Increasing mass going up
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Particle Identification
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Calculation of Production Rates
 Integrate around each isotope to find total counts
 Normalize counts to total beam current

• Measured in Faraday cup

 Use calculations from spectra and compare to 
LISE++ predictions

Example: 25Al

(1670 counts) * (60 pA) / (60 nC) = 1.67 particles per second
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40Ar +9Be
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40Ar +9Be
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24Mg +9Be
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24Mg +9Be
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Conclusions
 LISE++ predictions are most accurate for stable 

(N=Z) isotopes
 Higher predictions for proton-rich (N<Z)

• A few off by more than factor of 10

 Lower predictions for neutron-rich (N>Z)
 Most predictions are reasonable, but model could be 

improved
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