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Motivation
 We want to study radioactive nuclei
 Important for nuclear astrophysics
 Exotic nuclei not found in nature, they must be 

produced in the lab
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What is MARS?
 Momentum Achromat Recoil Spectrometer
 Can isolate specific beams of products from other 

beam products
 Separates based on magnetic rigidity and velocity 

selection
 Inverse kinematics – heavy ion beam on light target

• Products are forward focused due to momentum 
conservation

R. E. Tribble, R. H. Burch, and C. A. Gagliardi, Nucl. Instrum. Meth. A 285, 441 
(1989).
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Magnetic Rigidity
 Used to disperse secondary 

beams after target
 Moving charge curves in 

magnetic field
 Given by Lorentz force
 This is a centripetal force
 Bρ is chosen

• Determined by magnetic field
• Allows for p/q selection
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Magnetic Rigidity
 Only specific p/q will pass 

through, others are blocked
 Higher p/q = more rigid
 Lower p/q = less rigid
 Slits block off unwanted beam

• Width of slits determines acceptance
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Velocity Selection
 Perpendicular electric and 

magnetic fields
 Create forces in opposite 

directions
 Forces balance for specific 

velocity
• Centered on detector

 Because nuclei have the same 
mv/q, selection in v is also 
selection in q/m
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MARS Design
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My Research
 Study reaction products for three different 

fragmentation reactions
 Calculate production rates, then compare to 

computer predictions
 Important for computer predictions to be accurate
 Different methods of beam production are being 

investigated
• Want to know which reactions are best for maximizing 

production rates
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Nuclear Fragmentation
 Primary beam nucleus has nucleons shaved off as it 

passes target
• Keeps its velocity

 Produces wider range of exotic nuclei at higher 
energies than other mechanisms
• Fusion-evaporation, transfer

 First fragmentation reactions used with MARS
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Reactions
 Three reactions studied:

• 36Ar at 45 MeV/u
• 40Ar at 40 MeV/u
• 24Mg at 48 MeV/u

 306 µm 9Be target
 1000 µm Silicon detector

• Position-sensitive

 Reactions done with MARS here at the Cyclotron 
Institute
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LISE++
 Mass spectrometer simulation tool
 Developed for French spectrometer
 Calculates cross sections for nuclear reactions
 Uses cross section to determine momentum 

distributions of products
 Uses momentum distributions and magnetic settings 

to determine final production rates

O. Tarasov and D. Bazin, Nucl. Instrum. Meth. B 266, 4657 (2008).
K. Sümmerer et al., Phys. Rev. C 42, 2546 (1990).
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Using LISE++
 LISE++ has entire MARS 

setup installed
 Just select beam, target, and 

magnet settings
 Calculates production rates 

for different magnetic 
settings
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Particle Identification
 Use plots of energy loss versus vertical position

• Energy loss of particles ∝ q2/m
• Vertical position ∝ q/m

 Can identify regions for N=Z, N=Z+1, etc.
 LISE++ gives energy loss in detector

• Some particles lose all their energy
• Some make it through detector

 Different shapes are different energy loss
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Particle Identification
 Vertical axis is energy loss

• Units are channel number, 
but proportional to energy

 Horizontal axis is vertical 
position!

 Each cluster is different 
isotope

 Decreasing number of 
neutrons left to right

 Increasing mass going up
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Particle Identification
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Calculation of Production Rates
 Integrate around each isotope to find total counts
 Normalize counts to total beam current

• Measured in Faraday cup

 Use calculations from spectra and compare to 
LISE++ predictions

Example: 25Al

(1670 counts) * (60 pA) / (60 nC) = 1.67 particles per second
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40Ar +9Be
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40Ar +9Be
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24Mg +9Be
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24Mg +9Be
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Conclusions
 LISE++ predictions are most accurate for stable 

(N=Z) isotopes
 Higher predictions for proton-rich (N<Z)

• A few off by more than factor of 10

 Lower predictions for neutron-rich (N>Z)
 Most predictions are reasonable, but model could be 

improved
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